Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 303: 122399, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992599

RESUMO

Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Infecções por HIV , Camundongos , Humanos , Animais , Transdução Genética , Dependovirus/genética , Vetores Genéticos/genética , Terapia Genética
2.
J Biol Chem ; 299(6): 104743, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100283

RESUMO

Fc receptors are involved in a variety of physiologically and disease-relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counterselection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model, and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Agregação Plaquetária , Receptores de IgG , Humanos , Anticorpos/metabolismo , Plaquetas/metabolismo , Proteínas de Repetição de Anquirina Projetadas/metabolismo , HIV-1 , Isoformas de Proteínas/metabolismo , Receptores de IgG/metabolismo , Latência Viral , Linfócitos T/virologia
3.
iScience ; 24(3): 102170, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33585805

RESUMO

Cell entry of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its spike protein S. As a main antigenic determinant, S protein is in focus of various therapeutic strategies. Besides particle-cell fusion, S mediates fusion between infected and uninfected cells resulting in syncytia formation. Here, we present sensitive assay systems with a high dynamic range and high signal-to-noise ratios covering not only particle-cell and cell-cell fusion but also fusion from without (FFWO). In FFWO, S-containing viral particles induce syncytia independently of de novo synthesis of S. Neutralizing antibodies, as well as sera from convalescent patients, inhibited particle-cell fusion with high efficiency. Cell-cell fusion, in contrast, was only moderately inhibited despite requiring levels of S protein below the detection limit of flow cytometry and Western blot. The data indicate that syncytia formation as pathological consequence during coronavirus disease 2019 (COVID-19) can proceed at low levels of S protein and may not be effectively prevented by antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA